DSN Progress Report 42-41

July and August 1977

CRISPFLOW, A Structured Program Design Flowcharter

R. C. Tausworthe and K. C. Landon
DSN Data Systems Section

This article describes the design, prototype implementation, and use of an automated
tool, called CRISPFLOW, for generating design flowcharts of structured programs. The
user of this tool provides a file of English-like textual statements which directs the
drawing of the flowcharts. Layout, symbol sizing, location of text, scaling, and other

routine tasks are performed automatically.

l. Introduction

CRISPFLOW is a software design aid which automatically
generates ANSI-standard (and DSN Standard) flowcharts in
response to directives in a structured program design language
given to a computer. The name derives from Control-
Restricted Instructions for Structured Program FLOWcharting.
Because CRISPFLOW creates flowcharts at design time (from
a program design language), rather than at implementation
time (from a computer language), it serves as a tool which
encourages top-down development of software, relieving the
designer of the hand-drawn flowchart burden. Flowcharts are
easily available and economically produced, edited, and
redrawn during the design phase of a software development.
The charts produced are graphic representations of the
specifications for coding, not after-the-fact documentation of
what was coded.

The user of CRISPFLOW creates a file of statements
grouped into modules; each such statement represents one of
the symbols on a flowchart to be drawn. The syntax of
CRISPFLOW statements is taken from a subset of CRISP
(Ref. 1), except that English phrases can be used within the
syntax, as well as computer-language constructs, since no code

112

is being generated from CRISPFLOW statements. Each module
flowcharted occupies one standard page.

CRISPFLOW produces flowcharts for a canonic subset of
structures most commonly used for structured programming.
Less common structures, which include the extended IF form,
the indexed looping structure, paranormal exits, and other
components of CRISP described in Ref. 1 are not included in
the CRISPFLOW processor as of this report.

The CRISPFLOW processor reads a module from a user file
and converts this to an internal representation which describes
the flowchart symbols to be drawn, the sizes of these symbols,
where these symbols are to appear on a page, and what text is
to be printed in and around each symbol. The user needs only
to prepare a structured source program as described in the
next Section of this report. All topological considerations —
layout, symbol sizes, text locating, scaling, etc. — are per-
formed automatically by the CRISPFLOW processor.

The CRISPFLOW processor, as of this report, operates as
an MBASICTM program on the Univac 1108 which computes
the placement of the flowchart symbols on the page and
generates the points for plotting. When this is complete, a

FORTRAN subprogram draws the chart on either CALCOMP
or COM plotter, the latter on microfilm or microfiche.

ll. The CRISPFLOW Language

As described in Reference 1, the CRISP concept is one
whereby a control restrictive syntax is superimposed on some
base language of the user’s choice. Whenever the base language
is an abbreviated form of technical English, the constructs
form what is known as a procedure (or program) design
language. This CRISPFLOW prototype recognizes certain of
the CRISP constructs and generates structured flowcharts in
response. These constructs hereafter will be referred to as the
CRISPFLOW language.

This report will not detail this language, but, will rather
illustrate its capabilities. Further information on the CRISP-
FLOW language and processor is available from the authors.

CRISPFLOW permits the flowcharting of PROGRAM,
PROCEDURE(TO), and SUBROUTINE modules containing
IFTHENELSE, CASE, LOOP-REPEAT-IF, and LOOP-WHILE-
REPEAT flowchart structures. Each CRISPFLOW language
statement begins with a keyword which signifies the flowchart
symbol to be drawn. Each CRISPFLOW statement results in a
specific flowchart response.

A. Base Language Statements

Text which does not begin with one of the recognized
CRISPFLOW keywords is transferred directly onto the chart,
inserted into a standard process flowchart symbol (a rec-
tangle). For example, the text

BASE LANGUAGE STATEMENT

in the CRISPFLOW input file creates the flowchart image
shown in Figure la because the word “BASE” is not a recog-
nized keyword.

CRISPFLOW breaks the text string at spaces as needed to
fit, and centers the resulting substrings within the rectangle. If
the substring cannot fit inside the default-size rectangle,
CRISPFLOW selects a rectangle sufficiently large to contain all
of the text and then centers the text inside it.

B. CRISPFLOW Comment Annotation

Comments in the CRISPFLOW source images are denoted
by the delimiters “<*” and *“*>”°, which enclose the com-
ment. Comments may appear in any part of any statement.
When a comment appears in a statement, CRISPFLOW usually

discards it, and the comment does not appear on the flow-
chart. For example, the input statement

BASE <*COMMENT*>LANGUAGE STATEMENT

again results in the same flowchart image as in Figure 1a.

The comment text is not always discarded, however. In
particular, the comment field in PROGRAM, TO, PRO-
CEDURE, SUBROUTINE, DO, CALL, and CALLX state-
ments do appear on the flowchart in a manner described later.

C. Box Numbers and Cross-Reference Annotation

Statements in CRISPFLOW have optional additional fields
available for annotating the ANSI standard box number and
cross-reference notations (see Ref. 2) on each of the flowchart
symbols. For example, the form

.5/X1 BASE LANGUAGE STATEMENT

results in the flowchart response shown in Figure 1b. The text
string between “.”” and “/” is placed at the upper right of the
flowchart symbol, while the text string following “/”” up to the
first space is placed at the upper left of the flowchart symbol;
the entire text message beyond (if not beginning with a key-
word) is placed inside the box as described previously.

D. Source Cosmetics

Certain optional characters preceding the CRISP keyword
or base language statement are considered “cosmetic”, and are
ignored by CRISPFLOW. These characters are: !, “*:” *“-”,
“>70“_7, and “.”, when “.” is not in column 1. Cosmetic
characters may be used to enhance readability of the input file
and such usage will be illustrated in subsequent examples. For
the present, observe that

S/X1 t:io... BASE LANGUAGE STATEMENT

results in the same flowchart image as shown in Figure 1b,
previously described.

E. Module Delimiters

A module, as used here, is a set of statements that CRISP-
FLOW flowcharts as a single page. Each module flowcharted
must begin and end with one of the following pairs of
delimiter keywords:

PROGRAM PROCEDURE TO SUBROUTINE
ENDPROGRAM ENDPROCEDURE ENDTO ENDSUBROUTINE

113

A sample short module and its flowchart are shown in
Figure 2. In the upper right-hand corner, CRISPFLOW has
entered the text following MOD#, then, on the next line, the
text field following the keyword and up to, but not including
“MOD#’; next, the comment (date) text, and finally;
“PAGE OF ”. Any of the first three of these strings may be
absent. The fourth always appears. CRISPFLOW also supplies
a signature box for the designer, coder, and auditor; below this
appears the date the flowchart was drawn.

CRISPFLOW draws the same entry symbol in response to
the module-header keywords PROGRAM, PROCEDURE, TO,
and SUBROUTINE, and the exit symbol in response to END-
PROGRAM, ENDPROCEDURE, ENDTO, and ENDSUB-
ROUTINE. Text following MOD# on the module header is
drawn above and left of the entry symbol, and text following
the keyword is printed within the entry symbol. CRISPFLOW
prints “RETURN” in the exit symbol of SUBROUTINE
modules.

F. Striped Symbols

The ANSI standard convention (Ref. 2} for indicating that
a more detailed description or representation of a function is
to be found elsewhere is by means of “striping” the chart
symbol horizontally or vertically. CRISPFLOW uses state-
ments having the keywords DO, CALL, and CALLX for this
purpose. The text following the keyword appears at the top of
each such symbol, and the comment field, if there is one,
appears in the lower part of the symbol. Multiple comment
fields are merged together. For example, the statements

8 DO PARSE <*CONVERT MODULE TO A TREE &
STRUCTURE.*>

4/82 CALL INVMTX<*INVERT A MATRIX.*>

12/X3 CALLX PRTLIN<*PRINT A LINE*>&
<*ON THE TERMINAL.*>

cause CRISPFLOW to draw Figures 3a, 3b, and 3c, respec-
tively. CRISPFLOW stripes DO and CALL statements horizon-
tally, and CALLX statements vertically. Note the use of the
ampersand at the end of a line to continue the statement.

The CRISP DO statement is used to reference a procedure
flowchart by the same name elsewhere in the current docu-
mentation set; the CALL statement represents a linkage to a
subroutine documented elsewhere in the current documenta-
tion set. The CALLX form denotes reference to a procedure or
subroutine not in the current documentation set, but docu-
mented at the place cited by the cross-reference identifier (X3
above). CALLX statements, for example, are commonly used
to denote invocations of library subroutines.

114

G. The IFTHENELSE Structure

Binary decisions are plotted using the IFTHENELSE struc-
ture, which requires a block of statements of the form illus-
trated by

4 IF (DELTA<0)

5 Z=X+Y
:->(ELSE)

6 i Z=X-Y
.. .ENDIF

Note the use of cosmetics to enhance readability of the
CRISPFLOW source. The result is shown in Figure 4.

On the flowchart, CRISPFLOW places the condition under
test in the diamond followed by a question mark; “THEN”
and “ELSE” clauses are drawn to the left and right of the
diamond, respectively, and are labelled “T”” and “F”. The user
may have as many statements as desired in either the THEN or
the ELSE clauses. CRISPFLOW recognizes either ELSE or
(ELSE) as the beginning of the ELSE-clause. The ENDIF
statement is required to terminate the IF-block.

H. Looping Structures

CRISPFLOW provides two of the more common iterative
structures: both are bounded within LOOP. . REPEAT state-
ments in the source module, as illustrated in the following two
examples, which produce Figures 5 and 6, respectively.

PROCEDURE: NEWTON’S METHOD <* 11 Aug 77%> &
MOD# 1

<* THIS ITERATIVE PROCEDURE COMPUTES THE
<* ROOT OF SOME UNSPECIFIED FUNCTION OF X
<* STARTING WITH AN APPROXIMATION OF THE
<* ROOT. A LIMIT IS PLACED ON THE NUMBER
<* OF ITERATIONS TO FORCE LOOP TERMINA-
<* TION IF CONVERGENCE FAILS OR IS TOO
<* SLOW.

.1 ~ X=BEST GUESS OF ROOT, LIMIT=100, &
T=THRESHOLD
.2 100P

3 ! DELTA=FUNCTION(X)/DERIVATIVE(X)
4 ! X=X-DELTA, LIMIT=LIMIT-1, &

! ENOUGH=(ABS(DELTA)>T AND LIMIT>0)
5 1_REPEAT IF (NOT ENOUGH)

ENDPROCEDURE

SUBROUTINE: SEARCH <*29 AUG 76*> MOD# S29
<* ARGUMENTS ARE VAL: INTEGER,
<* FOUND: BOOLEAN.
<* SEARCH THROUGH INTEGER ARRAY FOR
<* VAL, AND SET
<* FOUND ACCORDINGLY.
.1 SELECT INITIAL PORTION TO BE SEARCHED
.2 LOOP WHILE (PORTION SIZE>1)
.3 ! REDUCE PORTION TO BE SEARCHED
! REPEAT
4 EXAMINE CHOSEN PART, AND SET FOUND
ENDSUBROUTINE

I. The CASE Structure

When branching in a program may take more than two
alternate paths, the CASE structure may be used. The format
of the CASE structure is illustrated in the next example, which
is a module that invokes one of three different subroutines
depending on the discriminant of a quadratic equation (b2 -
4ac):

TO FINDROOT <*11 AUG 77*> MOD#1.5.7.3
| DISCRIMINANT =B*#*2-4*A*C
2 CASE (DISCRIMINANT)
=>(=0)
3 : CALL ONEROOT <*PRINT SINGLE VALUE*>
=>(>0)
4/T7: CALL REALROOTS <*PRINT 2 REAL &
: VALUES*>
=>(<0)
.5/N3: CALL COMPROOTS <*PRINT 2 COMPLEX &
VALUES*>
:..ENDCASES
ENDTO

The decision condition follows the keyword CASE in
parentheses, parenthesized case labels signal the beginnings of
clauses, and the keyword ENDCASES terminates the struc-
ture. The flowcharter draws the decision-text string in a
diamond, draws the appropriate number of outcome flowpaths
below the decision symbol, and labels the flowpaths with the
various outcomes. Figure 7 shows the flowcharted result.

J. Nested Structures

CRISPFLOW automatically configures substructures to be
flowcharted within structures. The following SAMPLE pro-
cedure illustrates the nesting of structures in both source and
flowchart (Figure 8) forms:

PROCEDURE: SAMPLE <*18 SEPT 75*> MOD# 1.3.5
<* THIS SAMPLE MODULE DEMONSTRATES THE
<* CRISPFLOW SYNTAX WITH A HYPOTHETICAL
<* MESSAGE TRANSMISSION SYSTEM. STATE-
<* MENTS DENOTED BY ST1 THROUGH ST4 ARE
<* UNSPECIFIED HERE, AND THE READ ROUTINE
<* IS EXTERNAL TO THE SET OF DOCUMENTA-
<* TION FOR WHICH THE FLOWCHART IS BEING

<* PRODUCED.
.1 IF (UNALLOCATED)
2 CASE (MODE)
(1)
3 ST1
(2
4 ST2
5 ST3
(3)
6 ST4
ENDCASES
7/S1 CALL OPEN (MODE) <*CHANNEL IS MODE &
NUMBER.*>
(ELSE)
8 LOOP WHILE (AVAILABLE)
9/XS2 CALLX READ (CHR) <*READ CHARACTER*>
.10/S3 CALL WRITE(CHR) <*WRITE CHARACTER*>
REPEAT
ENDIF

.11 DO CLOSE<*MESSAGE SENT*>
.12 DO RELEASE<*DISCONNECT CHANNEL*>
ENDPROCEDURE

Note that comments after the procedure declaration do not
“transfer to the chart. In this case, the flowchart is less
explanatory than the source module, and should therefore be
accompanied by supplementary explanatory narrative.

lll. The CRISPFLOW Processor Design

The top-level CRISPFLOW control structure repeats for
each module in the source file the following three steps:

PARSE “‘the module into a tree”
LAYOUT *“the nodes of the tree on a plotter page”
DRAW *“the boxes and flowlines on the chart”

The parser scans each line of the source input stream to
pick up “tokens” (Refs.3, 4) and uses a bottom-up parse,
based on the first “keyword” token of each source line, to
construct an internal representation of the module’s parse tree.
The SAMPLE of Figure 8 generates the tree structure shown in
Figure 9, for example. The phrase structure of the CRISP
grammar is designed so that there exists a close corre-
spondence between nodes in this tree and “‘super-boxes”

115

(discussed below) on the chart. Each node in the tree corre-
sponds to a string of terminals in the grammar, and ultimately
is also made to reference all the information needed to locate,
draw, fill, and connect the box it represents.

The box-arrangement algorithm in the CRISPFLOW
system, LAYOUT, is responsible for translating between the
procedural and flowchart media in a manner which yields both
elegant and homomorphic mappings between source state-
ments and flowchart structures. The importance of the former
criterion cannot be over-emphasized, for the utility of the
system to potential users is greatly diminished if the boxes and
flowlines on a chart are not arranged in a straightforward,
well-formatted and easily-readable fashion. At the same time,
however, economic and human engineering considerations
dictate that such machine constraints as processing time and
memory requirements not be ignored.

The algorithm herein adopted for LAYOUT is a com-
promise, therefore, between a “dynamic programming”
approach and one which forestalls repetitive, brute-force
search schemes to allow rapid chart layout with only modest
memory demands. The “super-box” approach yields very well-
arranged charts without attempting to pack boxes as densely
(or as “cleverly’), as might be expected.

The layout routine scans the parser-generated tree in a
postorder, or bottom-up, traverse (Ref. 5), and for each node
encountered, forms a transparent “super-box’ which encloses
the superboxes of all its (nested) subtrees. The size of each
superbox is determined by the type of node (i.e., statement)
to which it corresponds. The postorder walk permits the
grammatical structure of the tree to be utilized as a “reduction
system”, or means to layout the chart in a single, compre-
hensive bottom-up pass through the tree. As the nodes at each
level in the tree are scanned and “‘reduced” to super-boxes,
they are used, in turn, to construct the super-boxes of the
nodes at the next higher level. This procedure continues until
the top-level statements of a module are combined into the
super-box for the entire chart.

The DRAWing routine is activated after the layout tree
traversal, and it first centers the super-box of the module on
the plotter page and scales it down to fit, if necessary. It then
performs a preorder, or top-down, tree scan, during which it
establishes coordinates, draws the boxes, fills them with text,
and connects them with flowlines, arrows, and collecting
nodes.

A. Super-box Definitions

The figures of this section illustrate the super-box formats
necessary to represent the flowchart symbols in this design,
along with their structured conglomerates. Figure 10 shows

116

the atomic boxes which are actually drawn in and annotated.
Figure 11 illustrates how “then” and “else” sub-superboxes
stand in relation to the superbox of the IFTHENELSE struc-
ture. Superboxes for LOOP, CASE and other structures are
similarly defined.

In Figures 10 and 11, DH is a unit of horizontal spacing
(normally about 3 mm) and DV is that for vertical spacing
(normally about 5 mm). These allow for box separation, arrow
heads, etc. SBH and SBW (possibly with distinguishing sub-
scripts) are acronyms for Super-Box Height and Width,
respectively, and are shown in Figure 11 with the equations
used to compute them from the known dimensions of their
constituent sub-super-boxes (either atomic or conglomerate).
The coordinates of all chart symbols within a super-box are
given relative to the axes of that super-box; the origin of a
super-box is located at its top dead center (i.e., at the point
bisecting its top edge).

Super-box outlines never intersect, and it is this property
which makes LAYOUT as straightforward as it is. To be more
precise, one super-box may enclose or be enclosed by others,
or two super-boxes may share a common edge, but no two
super-boxes may ever overlap. No super-box spacing is needed
since the super-box which directly encloses a chart symbol
includes sufficient space around its perimeter to give an eye-
pleasing format. Thus, the layout algorithm simply “pushes”
together the super boxes it “picks up” in a postorder walk
according to the *“blueprints” such as that in Figure 11. Once
the conglomeration of boxes comprises a complete module,
the chart origin and scale are determined to fit the chart on
the page.

B. Data Structures

The two primary structures needed for the above-sketched
algorithms are a binary tree (containing the parsed module
descriptions) and a pushdown stack (to enable walks of the
tree). Each node in the tree has identical structure, with
sufficient fields to keep box number, cross-reference, type,
size, x-y coordinates, and text information. Two pointer
fields are included in addition, so that the module can be
mapped onto a standard (leftmost descendant, sibling) binary
representation (thus allowing a constant number of fields for
each node packet), as shown in Figure 9. An entry in the stack
consists of a pointer to a node in the tree.

C. The Tree

The attributes of each flowchart symbol are organized into
the structure TREE. It is declared as a vector of records, and
each record, representing one node, has the fields described
below. The nodes are linked together into the tree structure by
two pointer fields in each node, denoted TREE.BROTHER

and TREE.SON. These pointers permit flowchart representa-
tion via a binary mapping of the tree nesting levels.

The fields (not all applicable to each node class) within
each node of the TREE are:

NAME

CLASS
SON, BROTHER
BOXNUM, XREF

DESCRIPTION

the type of node (e.g., IF, CASE,. .).
Pointers

The box number and cross-reference
identification strings for the chart
symbol.

TEXT, COMMENT The texts of the CRISP or base language
statement and any comment on the same
line.

SBW, SBH The width and height of the super-box
associated with this node.

W The width of the chart symbol to which
this node corresponds.

XY The chart coordinates of this superbox.

IV. Operational Characteristics

The Univac 1108 current implementation of CRISPFLOW
is coded in the MBASIC language (Refs. 6 and 7), and there-
fore the source files to direct plotting must be MBASIC
processor compatible (standard data file format). Such files
may be created using the MBASIC processor or the JPL text
editor.

CALCOMP flowcharts are normal (21.6 X 28 c¢cm or 8-1/2 X
11 inch) size but lack the drawing quality of the COM plotter
charts. The COM plotter produces high-quality charts on
either 35Smm film or 105mm microfiche; 35mm output

also is accomplished by a 23-cm (9-inch) photostat fur-
nished automatically. Full-page reproductions are available
then from the Central Reproductions Facility.

The cost of a flowchart, such as SAMPLE in Figure 8, is
about $4-$6 at prime-shift computer rates; during weekends,
the rate drops to about $.40-$.60 per chart. When the
MBASIC batch compiler becomes available, however, these
costs are expected to drop by a factor of 5 to 10. Recoding
the CRISPFLOW processor in a non-interpretive language
would also provide approximately the same operational cost
savings.

V. Conclusion

The use of CRISPFLOW as a design tool brings the power
of a computer-based system to relieve many of the objections
often levied against flowcharting. Editing and updates are as
easily accomplished on charts as they are on any other data
files. The charts are accurately and quickly drawn, and dis-
played in excellent drafting quality. Further, due to the high
level of the CRISPFLOW language and the 1-1 correspondence
between statements and chart symbols, programmers them-
selves quickly learn to use the source versions of modules, and
order the drawing of flowcharts only when they become
satisfied with their designs and desire documentation of a
more graphic form for others.

The processor described here is only a prototype;
undoubtedly it will evolve and improve as users interact with it
and suggest improvements. Usage will probably increase when
an MBASIC compiler becomes available to reduce costs. Even
in its current state, however, it is demonstrating the benefits of
computer-based graphic documentation of computer programs.

117

118

References

. Tausworthe, Robert C., Standardized Development of Computer Software; Farr 1,

Methods, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1977, Chapter 7.

. “American National Standard Flowchart Symbols and Their Usage in Information

Processing”, American National Standards Institute, Inc., ANSI X3.5-1970, Sept. 1,
1970.

. Donovan, John J., Systems Programming, McGraw-Hill, Inc., 1972, pp. 227-240.
. Aho, A. V., and Ullman, J. D., The Theory of Parsing, Compiling, and Translation,

Vols. I and II, Prentice-Hall, Inc., Englewood Cliffs, N.J.

. Knuth, D., Fundamental Algorithms, Vol. 1, Addison-Wesley Pub. Co., Reading, Mass.,

1969.

. “MBASIC, Vol. 1, Fundamentals,” Jet Propulsion Laboratory, Pasadena, Ca., March

1973 (JPL internal document).

. “MBASIC, Vol. 2, Appendices”, Jet Propulsion Laboratory, Pasadena, Ca., Oct. 1973

(JPL internal document).

i X1 l

BASE LANGUAGE BASE LANGUAGE
STATEMENT STATEMENT

Fig. 1. Response to base language statements: (a) without box
number or cross-reference annotations; (b) with annotations

120

SUBROUTINE INCOME TAX <*11 AUG 77*> MOD# 5
.1 GROSS INCOME=WAGES + TIPS +INTEREST INCOME
.2 DEDUCTIONS= 75p*DEPENDENTS+ STATE TAXES+ LOCAL TAXES+&
(MEDICAL COSTS- .P3*GROSS INCOME) + MOVING EXPENSES
.3 NET INCOME=GROSS INCOME - DEDUCTIONS
TAX=TAXTABLE (NET INCOME)
ENDSUBROUTINE

5

5
INCOME TAX
11 AUG 77
(INCOME TAX > PAGE OF

1

GROSS
INCOME=WAGES +
TIPS +INTEREST

INCOME

DEDUCTIONS=
750*DEPENDENTS +
STATE TAXES+ LOCAL
TAXES+ (MEDICAL
COSTS- .03*GROSS
INCOME) + MOVING
EXPENSES

NET
INCOME=GROSS
INCOME -
DEDUCTIONS

XF 1 4

TAX=TAXTABLE (NET
INCOME)

RETURN

16 AUG™7

Fig. 2. A sample flowchart showing entry and exit symbols, plus other annotations supplied
by CRISPFLOW for convenience in finding the chart among a set of charts on other docu-
mentation and for design control signatures

PARSE

CONVERT MODULE
TO A TREE
STRUCTURE .

l

S2

(b)

|

INVMTX

INVERT A
MATRIX.

l

(¢)

X3 l 1

P4

PRTLIN

PRINT A LINE ON
THE TERMINAL .

l

Fig. 3. Striped symbols used for displaying procedure, internal

subroutine, and external subroutine documentation

Z=X+Y

Fig. 4. Flowcharted response to an IFTHENELSE
block of statements in CRISPFLOW

121

NEWTON'S "ETHO(x) 829 SEA:CZS
11 AUG 77 PAGée Agg 76
NEWTON'S METHOD PAGE OF SEARCH
. 1
X=BEST GUESS OF SELECT INITIAL
ROOT, PORTION TO BE
LIMIT=100, SEARCHED

T=THRESHOLD

s

DELTA=FUNCTION(X)/
DERIVATIVE (X)
4 REDUCE PORTION
TO BE SEARCHED
X=X-DELTA,
LIMIT=LIMIT-1,]

ENOUGH=(ABS(DELTA)»T
AND LIMIT>0) |
4

EXAMINE CHOSEN
PART, AND SET

FOUND
RETURN
A A:
16 AUG 7 16 AUG 7
Fig. 5. Procedure module demonstrating LOOP .. REPEAT IF Fig. 6. Flowchart of a subroutine module illustrating a
block of statements LOOP WHILE . . REPEAT block of statements

122

1.5.3.7 FINDROOT
11 AUG 77
FINDROOT PAcE OF
1
DISCRIMINANT
=Bx*2-4%A%(
2
DISCRIMINANT
2
=0 >0 <0
17 4 N3 5
ONEROOT REALROOTS COMPROOTS

PRINT SINGLE
VALUE

PRINT TWO REAL
VALUES

PRINT 2 COMPLEX
VALUES

v

)

16 AUG 7

Fig. 7. Flowchaited result of a TO module containing a CASE structure

123

1.3.6

SAMPLE

18 SEPT 75
PAGE OF

1 2 3
4
STL sT2 ST4
‘s
ST3
S1 t 7
OPEN (MODE)

124

CHANNEL IS MODE
NUMBER .

[

READ(CHR)

READ CHARACTER

3 10
WRITE(CHR)

WRITE CHARACTER

T

CLOSE

MESSAGE SENT

l 12

RELEASE

DISCONNECT
CHANNEL

N
G
D:
A:
16 AUG 7

Fig. 8. SAMPLE procedure illustrating nesting of structures

PROCEDURE

SAMPLE
IF
(UNALLOCATED) DO CLOSE DO RELEASE
THEN ELSE
CALL
CASE (MODE) OPEN (MODE) LOOP WHILE
(AVAILABLE)
1 2
CALLX CALL
READ (CHR) WRITE (CHR)
ST sT2 o ST3 ST 4

Fig. 9. The Binary Parse Tree of Procedure “SAMPLE”. SON pointers exit the bottoms
of boxes, BROTHER pointers leave the sides

125

b
|

|
| l
R=2/3 I W . SBH = R*W+2* DV
|
|

| |-—saw=W+2*DH———>|
1

i-— SBW = W+ 2% DH ————l Fig. 10c. The oval for module entrances

Fig. 10a. The standard rectangle for CALL, CALLX, DO,
and target statements

= *
SBWD =W+2 SBWD

=1 ——43———w—

l | l SBHD Rew+ov |
——— I . | I R=2/3
| T
, A— LLJ
: e S, T |SBH = SBH+ DV
SBH = R*W+2*DV I SBH l SBH lmox (SBHT, SBHE)
I | _L E I
l _— N
| r 7 |
0 | eS|
|<————SBW=W+2*DH——| | | —]
R H .
Fig. 10b. The oval for module exits I T SBW = max (SBWp,, SBW +SBWp) |

Fig. 11. The super-box of an IF structure with Decision super-
box and Then and Else clause statement list super-boxes as
constituent parts

126

